找回密码
 注册
X系列官方授权正版
搜索
楼主: 三袋米

[转帖] 关于(食物资源)灌水有感----星际航行的限制真的是燃料吗?

[复制链接]
 楼主| 发表于 2007-7-10 19:40:58 | 显示全部楼层
卷一 太空航行导论 第六节 三种推进形式系统的比较
  

  关于各式推进系统的简单介绍到此为止,接下来则来探讨各种推进系统的可能运作情况。就第一类推进系统而言,化学火箭仍会是短时间内主要动力源之一,即使核能火箭开始运作,初期仍是要靠化学火箭来作地球表面至绕地轨道间的举升运载。但就行星间太空航行而言,化学火箭十分不经济,因此将会很快的被更佳的系统取代。
  核分裂电推力火箭技术难度与受控核融合火箭相比并不高,同时此类核电动力系统已累积大量的运转经验,因此有可能在短中期内成为主流,而核分裂的热推力火箭目前则是卡在环保问题以及政治问题上。实际上若是没有政治因素的影响,这类系统现今应该已经发展成熟并大量运用中。但既然已经拖延到现在,则可能会还没正式上台便结束其生涯。因先进的核分裂热推力系统之概念(气态核心炉)与核融合系统相当类似,同时核融合系统的能量效率又远较其为高,而构造简单的核融合脉冲推进系统又是可以立即上马,又没有核分裂系统的污染及辐射屏蔽问题,因而完全可以轻易击败核分裂热推力系统。再加上核分裂系统所用的燃料铀与钸等价格又较贵(藏量较少之故),因此很有可能会直接跳过核分裂热动力系统直接使用核融合脉冲推进系统。

  至于受控核融合推进系统则由于受控核融合尚未发展完成,同时即使发展完成,想成熟到能够装备至太空船上仍须一段时间,因此中期仍然应以核融合脉冲推进系统为主。不过长期下来,受控核融合系统仍然会成为主流,这是因为其比冲值较高的缘故。再者受控核融合的发展同时还有提供太空飞行以外一般能源的目的。

  核融合脉冲喷射则是为了太空飞行而发展的方法,并不适合用于作为供应一般能源的发电使用。目前受控核融合虽然也有以雷射爆缩的惯性拘束研究,但用在发电上系统的复杂度将不下于托卡马克的磁场电浆拘束系统,且输出功率也会较低。目前的雷射爆缩研究目的与其说是为了用来发电作为能源供应,不如说为了军事用途的核爆研究。

  不过即使是受控核融合系统普及之后,核融合脉冲推进仍然会以其极为简单的结构,相当大的推力与较低的系统故障率与价格而能占一席之地。特别是中小型的太空船就很可能会选择使用脉冲推进系统来作为推力源。象是百吨级或是千吨级的区间联系船,小型人员运输船,中型探测船或是区间太空战斗机,甚至是大型飞弹等都很可能都会使用此类系统。至于星际冲压喷射系统,则除了超长程恒星探测船外没有其它的市场,因而其进一步研究发展可能要再拖下去了。

  而第三种推进形式的的光压与磁压推进系统则具有极大的潜力,关键乃是在于价格方面。比如前文举的太阳光压系统一光秒距离加速的例子与核分裂动力火箭相比,两者间的巨大区别是火箭系统可能仅在几分钟内便可达到此一最高速度,但需要支出庞大的燃料成本,就核分裂引擎的标准太空船而言是一千吨富铀的价格,推进系统本身的造价尚未计算在内。而光帆系统则需要加速九天半,但是一毛燃料费用都不用花,只要太阳不熄灭就成。

  而光帆本体的价格则很便宜,从金属薄膜,凯夫勒纤维镀金属甚至网状材质等都有,总之能比一千吨的富铀贵的材料似乎并不多。再者核分裂火箭的这一千吨富铀(或者是核融合火箭的氦三或氘)都是会在飞行中消耗掉的。而聚光站与光束发射站都可以重复使用,因此价格可以分摊下来,实际上建造这些系统的成本并不比铀矿的开采与提炼设施贵多少(运费除外)。

  另外光帆可以重复使用,也可使用一次就丢掉,端视需要而定。换句话说,光帆的消耗性能量主要来自太阳,而这价格极低,其它推进系统的消耗性燃料在这方面无法与之竞争。但光帆系统的航道与机动远不及火箭系统,因此在行星间航行与输送中光帆系统将会是主要的「辅助动力源」。也就是同时装备火箭系统与光帆,有点象是装了蒸汽引擎的帆船,或者是装了帆的蒸汽船之类的。

  虽说是辅助动力,但可能是整个航行中一半以上到90%的能量是由光压提供。火箭系统仅于紧急时使用,或作为停车靠泊与航道修正时的辅助动力。但有个例外,军用舰艇不可能以光帆为主要动力,至少在战争时不可能,因为光帆系统的航道十分固定容易被预测,且体积,或者说是面积庞大,非常容易被侦知与破坏。因此在战斗舰艇上应该是以核融合推进为主要动力,另预留搭载光帆系统的硬点支架以于平时的训练任务中搭载光帆以节省燃料,或者作为出港时舰艇的加力器。

  当然在战时作为加力器用途的光帆将会在以其增加到一定速度后抛弃。这类一次使用性的光帆可以做的厚一点,在推进时以高功率光束照射以在短时间内获得最大推力。当然这样很可能会烧毁光帆,不过既然是一次性使用这就不重要了。所以光帆算是太空战舰的副油箱,可以增加其巡航半径与巡航速度。就地球上的类比而言,光压推进系统相当类似于地球上的铁道系统或是海运系统。具有廉价大量运输的特性,但机动性与加速度(并非速度)远低于汽车与空运体系。另外光帆或是磁帆亦可做为太空船的减速系统,就是光压煞车或是磁压煞车。运用这两种系统来煞车可让太空船的巡航速度立即提升一倍以上。这在后文将会提及。
回复

使用道具 举报

 楼主| 发表于 2007-7-10 19:41:31 | 显示全部楼层
卷一 太空航行导论 第七节 太空航行原理与一些初步概念
  

  所谓的航行不外乎是从一个地点移动到另一个地点。以太空航行而言,就是轨道转移的动作。从某个星球的轨道航行至另一个星球的轨道,或是从同一个星球的低轨道移动至较高的轨道,这种轨道转移的航行路径轨迹被称之为「转移轨道」。
  转移轨道有无限多条,但消耗能量最低的只有一条,被称为「霍曼转移轨道」,乃是由霍曼首先计算出来。霍曼转移轨道是相切于两个出发点和目标轨道的椭圆轨道,并且是两个星球在「合点」的时候才会出现。行星间的重要关系位置有两种,其一称为「冲点」,亦即两个行星位于太阳的同侧,乃距离最近的地方。其二是两个行星分别位于太阳的反对侧,是二行星间距离最远的时候,这个位置关系称为「合点」。

  基于星球运动与太空飞行原理,两个行星间航行消耗能量最低的是在距离最远的合点的时候,而非距离最近的冲点的时候,这是因为行星本身的运动速度与行星轨道上的恒星重力势能的影响。冲点虽然距离近,但由于飞行时必须先抵销行星的公转速度,因此消耗能量是最高的一种。

  霍曼转移轨道飞行需要在行星相对位置达到合点的时候,但行星间并非天天都在合点,比如地球和火星的合与冲每两年两个月一次,所以我们说朝向火星的发射窗口开放周期为两年两个月一次。

  霍曼转移轨道虽然是最节省能量的轨道(需要达到的速度最低),但并不是飞行时间最短的轨道。如果拥有足够强力的推进系统,则可以付出消耗更多的燃料为代价,走其它转移轨道更快的抵达目标,换句话说就是直接飞向目标。这种能力凭化学火箭是办不到的,必须要使用大推力与大功率的先进核分裂火箭(气态核)或是核融合推进系统才行。

  一般而言,是否值得消耗燃料进行快速航行端视需求而定。比如说海运的货物和空运的乘客显然是基于不同的需求,付出不同的成本来选择不同的运输方式。再者,在这些转移轨道中,会有几条自由返回轨道。所谓自由返回轨道便是在飞行中途发生事故必须放弃飞行时,能够返回出发点行星的轨道,这必须谨慎选择轨道与出发速度才行。如失败的阿波罗十三号便是走自由返回轨道才能在中途放弃任务后返回地球。除了这些轨道转移动作的注意事项外,其它的航行原理就较为简单了。

  太空船航行的运动原理乃是基于惯性定律。在一开始就提过,太空中没有阻力(其实是有,不过低到可以忽略),因此任何火箭想要煞车则必须消耗携带的燃料逆向喷射来减低速度,而前文提及的火箭公式中的最终速度则是指引擎全开到燃料消耗完毕所能达到的速度。因此前面的标准太空船的最高速度指的全都是太空船进行单程任务,无法回航甚至无法减速的速度。如果想要煞车,则最高速度必须减半。

  简单的来说,加速一个物体到某个速度与在将其速度减为零消耗的能量是相同的,只不过方向相反而已。换句话说这是一个矢量的概念。当然就火箭系统而言,由于燃料的消耗让总质量降低,因而使加减速时消耗的能量并不相同,但实际上,以同样的燃料想要减速停止,则速度仍然会降低成单程最高速度的一半。而这种程加减速的情形仅会出现在朝向一个目标港口航行的情况下,若是想要在出发后能减速停止并返回母港,则根据同样的原理,速度将会掉成原先的单程最高速度的四分之一。而这个速度就是实际上的实用最高速度,同时也是实用巡航速度。

  当然如果能出发到另一个港口补充燃料,则可以用两倍的燃料让实用最高速度达到单程最高速度的二分之一。如果想自行携带全程燃料达到相同的速度,需要携带多少燃料?各位读者不妨自己运用火箭公式计算一下。在此我们将不考虑这种情形,而以单程最高速度的四分之一当成实用最高与巡航速度。

  在太空中是无所谓省不省油的,你加到某个速度后关掉引擎,则太空船仍然会依惯性等速前进,因此其理论航程是无限的。但由于成员需要的消耗品如空气食物水等需要补给,因此太空船仍有一巡航时间,不考虑加速时间的话,这个时间乘上实用巡航速度便是该太空船的实用行动半径。简单来说,这跟核子动力船只与有点类似。

  核子动力船舰的行动半径并非受限于燃料,而是受限于食物等补给品与成员的心里问题。另外若能用光帆或磁帆作减速需求,则可以减少甚至不需要考虑减速会消耗的燃料,如此一来同样燃料携带量的太空船便可以达到两倍的巡航速度。但先决是要朝向太阳或是光源站航行,且使用的光帆重量不可超出原先减速用燃料的重量。

  基于相同的原理,太空船一般都会装备多具引擎。太空船的最终速度和引擎的推力与数量毫无关系,只和燃料有关。即使是仅装备一具低推力引擎,花费较长的时间去喷射燃料则仍然能达到相同的推进速度。以装备两具引擎的太空船而言,若其仅开启一具引擎则推力与加速度将降为一半,但燃料消耗速度也降为一半,因此加速时间为两具引擎的两倍。相乘之后所达成的最终速度是相同的,因此乍看之下似乎没有必要装备多具引擎。

  但问题在于太空中毫无阻力,如果飞行途中发生引擎故障的事故导致丧失推力,则太空船将会持续永恒的飞行下去。想要拯救引擎故障的太空船是极端困难的,这与地球上的情形完全不同。在地球上若是航行器引擎故障,则航行器必定会因为空气或水的力而停止。若是乘客没有在迫降中伤亡,又不是迫降在恶劣地点如喜马拉雅山脉中的话,则至多在数天之内便会获得救援。但在太空中毫无阻力,丧失推力的太空船无法停止,又由于宇宙空间的巨大距离以及火箭系统的理论限制,因而会使拯救工作相当困难且耗费庞大。这是因为救难船必须以更高的速度,至少必须是两倍以上,才能够在第一艘太空船飞行时间两倍之内追上去拯救遇难船舰。太空船距离基地越远,救援来到的时间就会越迟,若太空船已飞行一个月而引擎故障,则两倍速度的救难船会在发出求救信号后一个月才能抵达。且救难船将消耗大于两倍的燃料。若是救难船增加速度欲更快抵达,则所消耗的燃料便会增加的更快,导致必须付出大量的燃料成本。

  根据火箭公式,当太空船最终速度(单程)大于推进系统的喷气速度的时候,则任何微小速度的增加便会大幅增加质量比。当然在使用先进推进系统如核融合推进系统之时,一般的民用太空船之飞行速度由于经济上的考量,将不太可能超过其喷气速度。但是军舰则由于需要追求速度,便有可能发生此种情形。特别是追求高速的轻型军舰有可能在引擎发生故障后无法救援回收。因此追求高速的轻型舰反而较可能装备多具引擎,以避免因为引擎故障而完全失去动力的情况。

  附带一题的是,多引擎太空船的喷射口必须是成对对称于质心切线,一旦一具引擎故障或损坏,则必须同时关闭对称的另一具引擎。否则推力力矩将会造成太空船的旋转,欲使用姿态控制引擎修正此旋转力矩将会消耗大量燃料,是十分划不来的事。

  另外,太空航行的基地与目标不外乎以下几个,环地球轨道,环月轨道,环火星轨道,两个拉格朗日点L4与L5,小型星外围某处,环木星轨道等。这是以太阳系中的重点为主。地球与月球不用说了,火星的地位也相当重要。月球基地或许会比火星较早建立,但人口成长较快,发展较快的将会是火星而非月球。因为火星具有大气,有较好的农耕与生活条件,加上距离主要矿场与工厂的小行星带较近,可以就近供应燃料,食物与水,因此其人口增加速度与移民速度将会较高。
回复

使用道具 举报

 楼主| 发表于 2007-7-10 19:41:44 | 显示全部楼层
  小行星带除了是矿场地带之外,应该也是主要的浮游工厂位置。这是因为太空中原料运输成本(必须用太空船运输)远比能量运输(可用光束传输,甚至可能就地开采,即使用运输供给,氘与氦三等融合原料无论如何还是比金属轻很多)来的高,再加上一般而言产品的重量会比原料矿石低,虽然空间可能比较大,但是太空运输的问题在于质量而非空间,运输重量较低的产品可以减低成本,因此工厂应该会朝向原料产地集中。

  而太空殖民地的原料则可能先在小行星的浮游工厂生产出半成品的各种模块,再拖运至拉格朗日点组装。至于货柜船,邮轮,运输舰,油轮甚至是战舰则可能直接在小行星带的浮游工厂建造,因为那里有所有需要的原料。浮游工厂可以在无重力高度真空的环境下,生产出地球上不可能生产的极优良的产品与材料。如果需要重力的话,则可由旋转的离心力造出人工重力。

  例如一绕轴心旋转的扁圆型工厂,在圆周部份具有最大重力,旋转轴心部份则是零G,可依需要生产不同产品,甚至可将生产线串接起来,在不同的加工程序中可以运用最适当的重力要求环境。

  环木星轨道上则应该是主要的太空船燃料产地,应有轨道浮游工厂抽取提炼融合原料,再者由于燃料丰富,此地也该是主要的外太阳系与其它恒星系的长程探测船的基地,同时会有很多科学家聚集在此进行研究。

  L4与L5两个拉格朗日点的太空殖民地与太空城市则应该是太空航行的集散与转运中心,地位当如同今日的香港与新加坡,这两个地点的先占权争夺可能会引起相当的冲突。另外需要一提的是水星内侧的环太阳轨道将会有大规模的太阳能发电系统以及用以作光压推进的聚光站。能量将以微波的方式传送给地球,月球与太空殖民地。这些能量供应站应当具有相当高的自动化程度,仅需要最少人力便可*作。这个地区的能量站提供大量廉价的能源,具有重要的战略地位,但并非无可取代,至少受控核融合发电便可以取代之,虽然必须付出较高的价格。

  较重要的应该是往木星的航线,那应该是主要太空船燃料的供应地。不过即使这条航线中断,地球仍然可以由大海中提炼融合燃料重氢,月球也有相当大的氦三存量,而火星的氘蕴藏量则是地球的五倍。换句话说,往木星航线中断并非是致命性的,而仅只是稍微提高能源价格而已。真正具有无可取代的最重要战略地位的应该是原料产地与加工地的小行星带外围某处,这里的存废将会直接影响工业产品以及军事产品的质与量。另外地球本身,以及火星在粮食产量达到一个程度后基于粮食的需求应该也是战略要点。

  再者,还有一个特殊的地方,在距离太阳约 800AU的地方是太阳的重力焦点。自无限远方的宇宙来的平行光束经由太阳的重力偏转,将会聚焦在这个距离上。换句话说,在 800AU的虚拟天球表面上等于有一个与太阳直径相同的超级口径的天文望远镜。这种解像力足以使其能够详细观察数十亿到上百亿光年外的银河与宇宙边缘的细部结构,因此这里将是天文学家的天堂,不过这跟一般人的关系并不大就是了。

  就一般而言,太阳系内的太空航行应该是这些点之间的联系,在太空开发初期,大多数的运输能量将被用于运载工作母机与能源,以能在太空建立初期生产能量,一旦生产能量建立,大规模行星间运输能量将会成指数成长。发展到极盛时期,真正的运输动脉应该是小行星带的工业产品运输通路,地球的粮食运输通路与月球,火星或木星的能源运输通路。就乘客运输而言,会采取高速取向,在能够接受的成本内尽量以最高的速度来运输乘客,即使用快速运输舰。而对于产品与原料的运输,则应当是采取能源节省取向,以大规模,低能源消耗与长时间的型态来运输,即重型货柜船。而能源(特别是火箭燃料)则以介于两者之间的速度来运输。

  至于往其它恒星系的航行探索则并不在本文讨论范围内,将来若有可能的话再另行撰文讨论之。
回复

使用道具 举报

 楼主| 发表于 2007-7-10 19:43:00 | 显示全部楼层
卷一完:lol :lol :lol :lol :lol
回复

使用道具 举报

 楼主| 发表于 2007-7-10 19:50:03 | 显示全部楼层
关于标题的答案

     在太空中是无所谓省不省油的,你加到某个速度后关掉引擎,则太空船仍然会依惯性等速前进,因此其理论航程是无限的。但由于成员需要的消耗品如空气食物水等需要补给,因此太空船仍有一巡航时间,不考虑加速时间的话,这个时间乘上实用巡航速度便是该太空船的实用行动半径。简单来说,这跟核子动力船只与有点类似
回复

使用道具 举报

发表于 2007-7-10 20:07:22 | 显示全部楼层
好长。个人认为,星际航行如果存在空间跳跃技术,那么跳跃所需的能量将成为最主要的制约因素,如果没有空间跳跃技术,那么无论怎么样始终只能在太阳系里飞来飞去,能量就不再是主要控制因素了。
回复

使用道具 举报

发表于 2007-7-11 10:40:39 | 显示全部楼层
在太空中是无所谓省不省油的,你加到某个速度后关掉引擎,则太空船仍然会依惯性等速前进.......忽略各种力场吗。??。。这是理论纯粹真空才有的吧。。。。
回复

使用道具 举报

 楼主| 发表于 2007-7-11 11:55:13 | 显示全部楼层
请看完完整文章:L
回复

使用道具 举报

发表于 2007-7-11 14:41:37 | 显示全部楼层
除了这个场那个场,单单说机动,不准备些数以吨计的压缩空气如何完成一个个复杂机动,比如左转一点右转一些啥的,总不能说从基地出发,然后就直线到达目的地了吧...不过要是搞搞客运的话也许不用考虑复杂的机动...

:lol
回复

使用道具 举报

 楼主| 发表于 2007-7-11 14:52:11 | 显示全部楼层
那倒是,不过文章的标题也指出了(太空航行原理与一些初步概念),而且还只是太阳系内的航行效果(更贴近现实能达到的水平),所以不能拿X3中的航行理论来比较,因为要叫真的话,所有的太空游戏飞行理论都是不真实和行不通的(基本都是在大气层飞行的感觉,除了能在空中悬状态浮,倒退例外).
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

站长推荐上一条 /1 下一条

Archiver|手机版|小黑屋|DeepTimes.NET 太空游戏站